Sharp upper bound for the rainbow connection numbers of 2-connected graphs
نویسندگان
چکیده
An edge-colored graph G, where adjacent edges may be colored the same, is rainbow connected if any two vertices of G are connected by a path whose edges have distinct colors. The rainbow connection number rc(G) of a connected graph G is the smallest number of colors that are needed in order to make G rainbow connected. In this paper, we give a sharp upper bound that rc(G) ≤ ⌈n2 ⌉ for any 2-connected graph G of order n, which improves the results of Caro et al. to best
منابع مشابه
Sharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs
In $1994,$ degree distance of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the multiplicative version of degree distance and multiplicative ver...
متن کاملOn the strong rainbow connection of a graph∗
A path in an edge-colored graph, where adjacent edges may be colored the same, is a rainbow path if no two edges of it are colored the same. For any two vertices u and v of G, a rainbow u− v geodesic in G is a rainbow u− v path of length d(u, v), where d(u, v) is the distance between u and v. The graph G is strongly rainbow connected if there exists a rainbow u − v geodesic for any two vertices...
متن کاملRainbow Connection Number of Graph Power and Graph Products
The minimum number of colors required to color the edges of a graph so that any two distinct vertices are connected by at least one path in which no two edges are colored the same is called its rainbow connection number. This graph parameter was introduced by Chartrand et al. in 2008. The problem has garnered considerable interest and several variants of the initial version have since been intr...
متن کاملNote on rainbow connection in oriented graphs with diameter 2
In this note, we provide a sharp upper bound on the rainbow connection number of tournaments of diameter 2. For a tournament T of diameter 2, we show 2 ≤ − →rc(T ) ≤ 3. Furthermore, we provide a general upper bound on the rainbow k-connection number of tournaments as a simple example of the probabilistic method. Finally, we show that an edge-colored tournament of kth diameter 2 has rainbow k-co...
متن کاملOn Rainbow Connection Number and Connectivity
Rainbow connection number, rc(G), of a connected graph G is the minimum number of colours needed to colour its edges, so that every pair of vertices is connected by at least one path in which no two edges are coloured the same. In this paper we investigate the relationship of rainbow connection number with vertex and edge connectivity. It is already known that for a connected graph with minimum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011